Tow Truck

The goal for our tow truck was to have a 4-axis crane and a movable vehicle that we could remotely control with an Android smart phone.

tow_truck2

The parts we used for this project were:

Hardware Setup

The tow truck project used a camera mount for up/down/left/right crane motion and an Arduino car chassis for mobility. The controls were done using Bluetooth.

Meccano was used to build a box for the main structure. Wire was used to secure everything together. We laid a folded piece of paper under the Arduino Mega to ensure that none of the Arduino solder connections shorted on the metal Meccano base.

tow_truck_inside

The motor and servo shield that we used did not expose any of the extra Arduino pins, so we needed to use the Mega board. We then wired the Bluetooth module to the exposed pins on the end of the Mega.

tow_truck_circuit

Arduino Code

The Arduino code will vary a little based on the motor/servo shield that is used. Our shield was an older version 1 (V1) board that used direct pin connections (no I2C or SDA/SCL connections).

Also because Tx/Rx (Tx0/Rx)) were not available once our motor/servo shield was installed we used Tx1/Rx1 and so our Bluetooth connection was on Serial1 and not Serial.

For the Bluetooth communications we used the following command letters:

  • R = drive right
  • L = drive left
  • f = drive forwards
  • b = drive backwards
  • s = stop driving
  • r = move crane right
  • l = move crane left
  • u= move crane up
  • d = move crane down

Our Arduino code is below:

#include <Servo.h> 

Servo servo1;
Servo servo2;

char thecmd;
int xpos = 90;
int ypos = 90;

AF_DCMotor motor1(1); 
AF_DCMotor motor2(2);

void setup() {
  pinMode( 19, INPUT_PULLUP );
  Serial1.begin(9600);
  Serial1.println("Crane Controls");
  Serial1.println("r = right, l = left, u= up, d = down");
  Serial1.println("Driving Controls");
  Serial1.println("R = right, L = left, f = forwards, b = backwards, s = stop");
  servo1.attach(9); // attaches the servo on pin 9 to the servo object 
  servo2.attach(10); // attaches the servo on pin 9 to the servo object 
  
  servo1.write(xpos);
  servo2.write(ypos);

  motor1.setSpeed(255);
  motor2.setSpeed(255);

}
void loop() {
  
  if (Serial1.available() > 0) {
        // read the incoming byte: 
       thecmd = Serial1.read();
       Serial1.println(thecmd);
       if (thecmd =='l') { move_crane(servo1, 5); }
       if (thecmd =='r') { move_crane(servo1, -5); }
       if (thecmd =='d') { move_crane(servo2, 5); }
       if (thecmd =='u') { move_crane(servo2, -5); }
       if (thecmd =='f') { 
            motor1.run(FORWARD); 
            motor2.run(FORWARD); 
       }
        if (thecmd =='b') { 
            motor1.run(BACKWARD); 
            motor2.run(BACKWARD); 
       }
       if (thecmd =='L') { 
           motor1.run(BACKWARD); 
           motor2.run(FORWARD); 
       }
       if (thecmd =='R') { 
            motor1.run(FORWARD); 
            motor2.run(BACKWARD); 
       }
       if (thecmd =='s') { 
           motor1.run(RELEASE); 
           motor2.run(RELEASE); 
       }
  }
}

void move_crane(Servo theservo, int direction) {
  int minpos = 50;
  int maxpos = 220;
  if (direction < 0) {
    if (ypos > minpos) {
      ypos = ypos + direction;
      theservo.write(ypos);
    }
  }
  else {
    if (ypos < maxpos) {
      ypos = ypos + direction;
      theservo.write(ypos); 
    }   
  }
}

Android Program

To communication to an Android smart phone we used MIT’s App inventor. This is a free Web based Android development tool.

There are many ways to layout a control screen, for us we used a 10×3 table and then populated it with buttons. Our layout is shown below:

ai_layout

The button logic will pass the required letter command to the Bluetooth component:

ai_logic

Our final running App looked like:

Screenshot_tow_truck

Bluetooth Controlled Arduino Airboat

By using plastic bottles, K’Nex and some duct tape we built a boat frame. The fans on the Arduino module are controlled with Bluetooth from a phone.

OLYMPUS DIGITAL CAMERA
Airboat making a Left Turn

For this project the electrical parts that you need are:

– Arduino Uno
– 3x Fan Modules for Arduino ($6 each)
– 6x AA Battery Case w/ Power Plug ($4)
– Prototype Shield w/ Breadboard ($5)
JY-MCU Bluetooth Module ($7)

The fans are powered directly from the Arduino 5V pins, so no extra batteries are needed. With 3 fan modules the airboat moves quite well, 2 fans will also work. The fans will spin in either direction depending on the inputs used (INA or INB).

For flotation we used two medium sized plastic bottles, and for the frame we use K’Nex pieces. To connect the K’Nex frame to the bottles duct tape works well. The fans can be attached to the frame with wire, string or bolts and screws. To protect the Arduino some Tupperware can be taped to the middle of the frame.

boat_frame2

For the JY-MCU Bluetooth Module, you need to cross the TX and RX pins. TX on the module goes to RX on the Arduino, and RX on the module goes to TX on Arduino.

arduino-bluetooth

To connect your phone to the Arduino project your phone will need a Bluetooth Terminal program. For our Android phone we use the “Bluetooth Terminal” from Qwerty it’s free and easy to use.

You will also need to pair your phone with the JY-MCU Bluetooth Module. When you scan for Bluetooth devices the Arduino Bluetooth module will probably be called HC-06 .The pairing code will be: 1234 .

To control the airboat we use the following letters:
g – go forward
s – stop
l – left turn
r – right turn

phone_test

For the wiring of the fans we use pins 6 to 11. The Arduino and the battery pack will need to be balanced in the tupperware, otherwise the fans might touch the water.

The final code that we used is below.

// Airboat with 3 fans controlled by a bluetooth phone

int INA1 = 6; // back fan
int INB1 = 7; // back fan
int INA2 = 8; // right side fan
int INB2 = 9; // right side fan
int INA3 = 10; // left side fan
int INB3 = 11; // left side fan

char thekey; // input from Bluetooth phone

void setup()
{
// initialize the serial communication:
Serial.begin(9600); //baud rate of Bluetooth Module
// define the pins of the 3 fans as outputs
pinMode(INA1,OUTPUT);
pinMode(INB1,OUTPUT);
pinMode(INA2,OUTPUT);
pinMode(INB2,OUTPUT);
pinMode(INA3,OUTPUT);
pinMode(INB3,OUTPUT);
// start with all fans turned off
digitalWrite(INA1,LOW);
digitalWrite(INB1,LOW);
digitalWrite(INA2,LOW);
digitalWrite(INB2,LOW);
digitalWrite(INA3,LOW);
digitalWrite(INB3,LOW);
}

void loop() {

if (Serial.available() > 0) {
thekey = Serial.read(); // get the key from the phone

// "s" stops all fans
if (thekey == 's') {
Serial.println("Fans are stopped");
digitalWrite(INB1,LOW);
digitalWrite(INB2,LOW);
digitalWrite(INB3,LOW);
delay(1500);
}
// "g" runs all fans
if (thekey == 'g') {
Serial.println("Fans are going");
digitalWrite(INB1,HIGH);
digitalWrite(INB2,HIGH);
digitalWrite(INB3,HIGH);
}
// "l" only run right fan, turn left
if (thekey == 'l') {
Serial.println("Turn left");
digitalWrite(INB1,LOW);
digitalWrite(INB2,HIGH);
digitalWrite(INB3,LOW);
}
// "r" only run left fan, turn right
if (thekey == 'r') {
Serial.println("Turn right");
digitalWrite(INB1,LOW);
digitalWrite(INB2,LOW);
digitalWrite(INB3,HIGH);
}
}
}

 

Android Controlled Robot Arm

Create a mobile robot arm that you can control from an Android smart phone.

We found a used robot arm (OWI-535) on Kijiji, but you could buy a new one for $30-$60.  We then mounted it on an Arduino car chassis ($20) with some duct tape. Luckily the OW-535 robot arm has all its wiring exposed and it comes with a good wiring document.

Parts

For this project we used:

  • 1- OWI-535 robot arm
  • 1- Car chassis ($17)
  • 1- Four motor Arduino shield ($10)
  • 1- Two motor Arduino shield ($10)
  • 1- JY-MCU Bluetooth module ($7)
  • 1- Arduino Mega
  • Duct tape, jumpers and 4 alligator clips
  • 1- Small USB charger
  • 1- Small Box (to house all the components)

OLYMPUS DIGITAL CAMERA

Wiring

The biggest challenge is to control the 5 robot motors and 2 wheel motors. For this we used an Arduino Mega and 2 motors shields. Depending on the motor shields that you use you probably won’t be able stack the motor shields. We stacked one motor shield and we had the second motor shield floating.

robot-arm-circuit

Some of the key wiring connections were:

  • Mega Pin 44 -> Floating Motor Shield pin 4
  • Mega Pin 45 -> Floating Motor Shield pin 5
  • Mega Pin 46 ->Floating Motor Shield pin 6
  • Mega Pin 47 -> Floating Motor Shield pin 7
  • Mega Pin 5V -> Floating Motor Shield pin 5V and VIN
  • Mega Pin 19 RX1 -> Bluetooth module TX
  • Mega Pin 18 TX1 -> Bluetooth module RX

To power this project we found that a portable USB charger was enough. If however you find that a USB charger does not deliver enough power the OWI-535 robot arm has a built in power pack with exposed power connections.

The motor terminals on the car chassis are a little fragile, so rather than soldering wires we used alligator clips. We also duct taped the wires under the car chassis to keep them secure.

The Arduino wiring was pretty ugly so we stuffed all the loose components into a small box. The box was duct taped to the back of the robot arm, and 2 cuts were made to feed the wires through.

inside_box.png

Code

For the Arduino code you’ll need to add the appropriate motor libraries. For our motor shields  we used the Adafruit V1 motor shield (https://github.com/adafruit/Adafruit-Motor-Shield-library).

Because the first motor shield blocked the RX0/TX0 pins, we used RX1 and TX1 on pins 19 and 18. For the Bluetooth communications it meant the Serial1 was used in the Anduino code instead of Serial.

For our commands we used:

  • 0 = Hand open (motor 1 forward)
  • 1 = Hand closed (motor 1 backward)
  • 2 = Wrist down (motor 2 forward)
  • 3 = Wrist up (motor 2 backward)
  • 4 = Elbow down (motor 3 forward)
  • 5 = Elbow up (motor 3 backward)
  • 6 = Shoulder up (motor 4 forward)
  • 7 = Shoulder down (motor 4 backward)
  • g = Go forward (pins: 44/46=HIGH, 45/47=255)
  • s = Stop (pins: 44/46=HIGH, 45/47 =0)
  • r = Right turn (pins: 44/46=HIGH, 45=0, 47 =255)
  • l = Left turn (pins: 44/46=HIGH, 45=255, 47 =0)
  • b = Go backward (pins 44/46= LOW, pins 45/47 =255)
  • o = Light ON, (pin 50 = HIGH)
  • f = Light OFF, (pin 50 = LOW)

Our final Arduino code is:

//
// Bluetooth control of a mobile robot arm
//
#include 

char inByte;
// Define remapped pins for 'floating' motor shield
int E1 = 45; 
int M1 = 44; 
int E2 = 46; 
int M2 = 47; 
int LIGHTpin = 50;

// DC motor on M1
AF_DCMotor motor1(1); // hand
AF_DCMotor motor2(2); // wrist
AF_DCMotor motor3(3); // elbow
AF_DCMotor motor4(4); // shoulder


void setup() {
 pinMode(M1, OUTPUT); 
 pinMode(M2, OUTPUT);

pinMode( 19, INPUT_PULLUP ); // For better Bluetooth stability
 Serial1.begin(9600); 
 Serial1.println("Robot Commands");
 Serial1.println("Menu...");
 Serial1.println("Enter: 0-7 for robot arm, g/s/l/r/b for wheels ");
}

void loop() {
 
 if (Serial1.available() > 0) {

// read the incoming byte:
 inByte = Serial1.read();
 if (inByte == '0') { runmotor(motor1,FORWARD); }
 if (inByte == '1') { runmotor(motor1,BACKWARD); }
 if (inByte == '2') { runmotor(motor2,FORWARD); }
 if (inByte == '3') { runmotor(motor2,BACKWARD); }
 if (inByte == '4') { runmotor(motor3,FORWARD); }
 if (inByte == '5') { runmotor(motor3,BACKWARD); }
 if (inByte == '6') { runmotor(motor4,FORWARD); }
 if (inByte == '7') { runmotor(motor4,BACKWARD); }
 if (inByte == 'g') { runwheels(HIGH,HIGH,255,255); } 
 if (inByte == 's') { runwheels(HIGH,HIGH,0,0); } 
 if (inByte == 'r') { runwheels(HIGH,HIGH,0,255); } 
 if (inByte == 'l') { runwheels(HIGH,HIGH,255,0); } 
 if (inByte == 'b') { runwheels(LOW,LOW,255,255); } 
 if (inByte == 'o') { digitalWrite(LIGHTpin, HIGH); }
 if (inByte == 'f') { digitalWrite(LIGHTpin, LOW); } 
 }
}
//--------------------------------------------------
void runwheels (int M1dir,int M2dir,int E1speed, int E2speed) {
 // For control of wheels direction and speed
 digitalWrite(M1, M1dir); 
 digitalWrite(M2, M2dir); 
 analogWrite(E1, E1speed);
 analogWrite(E2, E2speed); 
}
//--------------------------------------------------
void runmotor(AF_DCMotor themotor, int direction) {
 // Robot Arm motor control
 themotor.setSpeed(250);
 themotor.run(direction);
 delay(250);
 themotor.run(RELEASE); 
}

Android App

MIT’s App Inventor is free and it’s a great way to quickly make Android apps: http://ai2.appinventor.mit.edu/.

For this app we used:

  • 1 TableArrangement
  • 1 Listpicker
  • 15 Buttons
  • 7 Labels
  • 1 BluetoothClient (non-visible)

app1.PNG

A TableArrangement component with 3 columns and 11 rows is used to position all of the buttons and labels. After a component is positioned into the table, select the component and then use the Properties window to change its text, color, or sizing. The Components window is used to rename the component.

In the Blocks screen, blocks are dragged from the left Blocks section to the main viewer section. The following key blocks were used:

  • when Screen1.Initialize. This is called when the app is opened and it will show a list of all the phone’s paired Bluetooth device. This list is generated by connecting the blocks: BluetoothClient1.AddressesAndNames to set ListPicker1.Elements
  • when ListPicker1.BeforePicking. This block is called after the JY-MCU Bluetooth module (typically HC-06) is selected. Inside this block ListPicker1.Selection is an input to the Call BluetoothClient1.Connect block.
  • when .Click. This block is called when a “command” button is clicked. This block will send the required Bluetooth text command, so for example “g” is sent to go forward, and “s” is sent to stop.

app3

The full AppInventor code is:

full_logic

Once all the logic is created, you can download the app (APK file) or use a QR quick code to put it on your phone.

app2qr

The final step is to power up your Arduino project. When you do this the JY-MCU Bluetooth module will start to blink. This is telling you the module is ready to pair with your phone. On your phone’s SETUP->BLUETOOTH SETTINGS scan for new devices and you should see the JY-MCU Bluetooth module (it’ll probably be called HC-06). The pairing code is: 1234.

Now you are ready to open your new Android app. A dialog will ask you which device to connect to. Select your HC-06 device.

select

For this point on you will be able to control the robot with your phone.

screenshot